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Abstract. A scheme of composition of interactions, which is the generalisation of Sokolov’s 
method of packing operators, is proposed. This scheme can be used in all forms of relativistic 
quantum dynamics. In contrast to the formulation of Coester and Polyzou, we make no 
use of the properties of multichannel wave operators, but use only the properties of the 
Poincart group unitary representations. A solution to the problem of composition of 
interactions in the instant form is given, and it is shown that this solution agrees with that 
obtained by Coester and Polyzou. 

1. The statement of the problem 

In relativistic quantum theory, a description of all interactions in the considered system 
is accomplished by assuming some unitary representation of the PoincarC group, the 
objects comprising the system being in this case either elementary particles or particle 
fields of a given type. 

By definition, a field of particles of a given type is described by a Fock column, 
the nth component of which is a wavefunction of the state comprising n non-interacting 
particles of a given type. Accordingly, it is assumed that the wavefunction of a field 
of particles of a given type is transformed over the PoincarC group representation 
which is a direct sum of one-particle, two-particle, etc, representations. 

Let the considered system comprise N objects 1 , 2 , .  . . , N. Hereafter, it is of no 
importance for us whether these objects are particles or fields of particles of a given 
type. The only niatter of significance is that each object i is described by some unitary 
representation of the PoincarC group g + Ui(g)  on the Hilbert space 2,. 

By definition, the objects 1 , 2 , .  . . , N are not interacting with each other, if the 
wavefunction of the considered system is transformed over a tensor product of rep- 
resentations g+ U,(g) ,  i = 1 , 2 , .  . . , N, taking the statistics into account. That is, if 
there are identical particles among the objects, the system wavefunction should be 
symmetrised adequately. A representation describing a system of N non-interacting 
objects will be denoted by g+  U ( g ) .  However, if the objects are interacting with each 
other, then it is assumed that the representation space 3Y remains the same as for the 
representation g + U ( g ) ,  but operators of the representations g + c ( g )  differ from 
those of the representation g+  U ( g ) .  Of course, if we consider some subsystem of 
the considered system (comprising, evidently, not more than N - 1 objects), then one 
may speak of the interaction of objects in this subsystem in an analogous way. 

It is often convenient to work in physics with representations not of the PoincarC 
group but of its Lie algebra. In this case it is always assumed that one may construct 
a representation of the group Lie algebra using the group representation, and vice 
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uersa, the considered representation of the Lie algebra can be uniquely integrated to 
a global representation of the group. We shall adopt this assumption as well. 

As follows from the definition of a tensor product of the group representations, 
the generators of such a representation are equal to the sum of generators any of 
which acts non-trivially only over the variables of a single object, acting over the 
variables of other objects as an identical operator. Thus, a standard technique of 
introducing the interaction implies that into the expressions for generators of a 
non-interacting system there is introduced the dependence on the so-called interaction 
operators which act non-trivially over the variables of at least two objects. The 
interaction operators are not arbitrary, since the new system of generators as well as 
the original one should satisfy the commutation relations for representation generators 
of the PoincarC group Lie algebra. In addition, representation generators should not 
be dependent on how we enumerate the objects in the considered system. 

Let a be some partition of the considered system of N objects into n non-interacting 
subsystems a l ,  a2,. . . , an. By definition, interactions between these subsystems are 
considered as eliminated if all interaction operators acting non-trivially over the 
variables of at least two of these subsystems are assumed to be equal to zero. It is 
evident that in this case the wavefunction of the whole system is transformed over the 
representation g -, fim,,,,an(g) = V(g, a )  equal to a tensor product (taking the statistics 
into account) of the unitary representations g+ f i a , ( g )  for the subsystems. Let the 
representations g-, f i a ( g )  be known for all subsystems a of the considered system 
and g+ o(g) be an arbitrary unitary representation of the PoincarC group for the 
whole system. If for any a the representation operators g+ f i ( g )  go over into 
Ua,,..an (g) upon elimination of the interaction between the corresponding subsystems, 
then it is said that the (algebraic) property of cluster separability is satisfied. 

In physical applications the property of cluster separability is a necessary but not 
sufficient condition to fulfil the macrolocality property (see discussion, for example, 
in the works by Sokolov (1975) and Coester and Polyzou (1982)). In the present 
work, we shall limit the discussion only to the above algebraic formulation of the 
cluster separability property. This property is formulated as the condition C1 in Coester 
and Polyzou (1982). However, to prove that the stronger properties of separability 
are fulfilled, one should consider specific models. 

The problem of composition of interactions can be formulated now as follows. Let 
the property of cluster separability be fulfilled for any subsystem of the considered 
system. In which way can a unitary representation of the PoincarC group for the whole 
system, which fulfils also the cluster separability property, be constructed? As noted 
hereinafter, the problem of introduction of the interaction into the system is a particular 
case of the problem considered. 

The problem of composition of interactions was initially dealt with in relativistic 
quantum mechanics, corresponding to a case when all objects in the considered system 
are particles. To solve this problem, Sokolov (1977,1978) proposed a so-called method 
of packing operators. Proceeding from the concepts of these works and from the 
multichannel scattering theory, Coester and Polyzou (1982) proposed such an approach 
to the solution of this problem in which only the properties of the PoincarC group 
unitary representations and the completeness of multichannel wave operators are used 
rather than the explicit form of wavefunctions. In such a formulation the problem can 
be considered both in relativistic quantum mechanics and quantum field theory (either 
local or non-local). Hereinafter (but independently) we shall propose an approach 
which is similar in a number of ways to that of Coester and Polyzou. Our approach 
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uses only the properties of the PoincarC group unitary representations. It is shown 
subsequently how our approach works in three basic forms of dynamics described first 
by Dirac (1949). We show that in the instant form there is a simple class of solutions 
without the ‘packing’ of mass operators. We show also that our solution in the instant 
form agrees with that obtained by Coester and Polyzou (1982). 

2. Different decompositions of space slp 

In this section, when considering the representation g + G(g) over which the wavefunc- 
tion of the considered system is transformed, we shall assume that along with the 
conditions in § 1 there are satisfied some other additional conditions. The latter are 
believed to be rather natural from the point of view of physical applications; however, 
a rigorous proof of their satisfiability can be realised in specific models only. 

Let us consider first the reduction of the representation g + 3 ( g )  on a translation 
group of the conventional three-dimensional Euclidean space. This reduction defines 
a spectral measure A +  &(A)  on the R3-space of three-dimensional momenta. Suppose 
that this measure is absolutely continuous relative to the conventional Lebesgue measure 
A + p ( A )  on R3. Then, using the formalism of spectral forms proposed by Kat0 and 
Kuroda (1971), one can decompose the representation space 2 into the direct integral 
JO &( p )  d3p. 

Condition 2.1. In the space X there exists such a dense subspace ,y that for any 5, 
77 E x and any point p E R3 there exists the Radon-Nikodym derivative 

where (,) is an inner product on 2, and the limit is taken over the sets A containing 
the point p and contracting to this point. 

Note that the condition 2.1 is somewhat stronger than those in Kat0 and Kuroda 
(1971). However, in applications the conditions stronger than 2.1 are generally 
satisfied. For instance, in analogy with Kat0 (1977), where applications to the problem 
of many bodies are considered, one would suppose also that x has the topology of its 
own, and the function f ( p ;  5, 7) is (jointly) continuous in p E R3; 5, 77 EX. 

According to the scheme of Kat0 and Kuroda (1971), f ( p ;  5, 7) at every p is 
considered as a semi-inner product on x and induces naturally an inner product on 
the quotient space x / X ( p ) ,  where X ( p )  = (5: f i p ;  5,t) = 0). X ( p )  is defined then as 
a completion of x / N ( p ) .  The map I ( p ) :  ;y+ X ( p )  is defined as a composite of two 
canonical homomorphisms x + x / N ( p )  + X ( p ) .  The image of x at the map I ( p )  is, 
of course, dense in &( p ) .  The sets {5 (  p ) } ,  f (  p )  E %’( p )  are the elements of the space 
(0 &( p )  d3p, the former fulfilling the property of f-measurability (see the definition 
in Kat0 and Kuroda (1971)) and the property 

IR3 l15(P)ll&p) d3P<33 (2.2) 

where 11. . . I 1  
is defined on the elements  EX as follows: & 5 = { I ( p ) 5 } .  

is the norm in &( p ) .  The unitary operator G from 2 to JO %’( p )  d3p 
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We denote &(O) = &( p )  at p = 0. Our next task is to construct the unitary operator 
& ( p )  from &(O) to & ( p )  at any p.  We denote 

a ( A )  =(Ao+1+Aa)/[2(1+Ao)]"2 (2.3) 

where A. = ( 1  + A 2 ) 1 / 2 ,  and {a} are Pauli matrices. It is well known that a ( A )  E SL(2, C )  
and defines the purely Lorentz boosts. Let M be a mass operator of the system, and 
Z(m) its spectral function. We shall always assume that the operator h has a strictly 
positive lower bound. Since the operator fi{ a ( p /  m)} commutes with M at all p and 
m, we can correctly define the integral 

8 ( p )  = f i { a ( p / m ) }  de*(m) (2.4) 

as a strong limit of the corresponding Riemannian integral sums. Since G { a ( A ) }  is a 
unitary operator, one can prove in a standard way that the operator (2.4) is also 
unitary. Let us introduce the operator & p )  = (1 + p 2 / M 2 ) l / '  and define a new operator 
f i ( p )  = o ( p ) f i ( p ) .  To proceed with considerations, we need the following. 

Condition 2.2. 
and fi(r), r E SU(2). 

The subspace ,y is invariant under the action of operators fi( p ) ,  p E R 3  

One may expect that this condition would be not too limiting. In applications the 
role of ,y is played usually by a space of functions which are sufficiently smooth and 
rapidly decreasing at infinity. If interaction operators in the momentum representation 
are integral operators the kernels of which are sufficiently smooth and rapidly decreasing 
at infinity, then one should expect condition 2.2 to be surely satisfied. However, the 
rigorous proof of the above statement is not expected to be a simple one, especially 
in the case of systems having an infinite number of degrees of freedom. 

We can now define the operator " ( p )  by the formula 

& ( p ) h  = Z ( p ) f i ( p ) t  (2.5) 

if h = I ( 0 ) t .  This operator has an inverse 

4 i ( p ) - ' h ' = z ( O ) f i ( p ) - ' p  (2.61, 

if h ' = Z ( p ) q .  Proceeding from (2.1), (2.4), from the law of group multiplication in 
the PoincarC group, and from the formula which places the element of the Lorentz 
group in correspondence with the element of the group SL(2, C), one may show 
through conventional calculations that IIG(p)hll g(p l  = Ilhll *.co,. Thus, % ( p )  is indeed 
a unitary operator from %(O) to & ( p ) .  The requirement of introducing the operator 
fi( p )  is related to the fact, which is well known in the theory of one-particle representa- 
tions, that d3p/( m2 +p2)1'2, rather than d3p, is a relativistically invariant measure, 
where m is the mass of the particle. 

Let us consider now the reduction of the representation g +  fi(g) on the group 
SU(2). Proceeding from condition 2.2 and the analogy with the proof of the unitarity 
of operators &((PI ,  we can prove that the operators i ( r )  defined by the formula 

u ( r ) h  = I ( O )  f i ( r ) t ,  (2.7) 

where rESU(2), h=Z(0)5,  define a unitary representation of the group SW(2) on 
&(O). We denote by 1 the generators of such a representation. 
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Since the mass operator $f commutes with operator: &(A) ,  then, according to the 
von Neumann theorem, in the representation X = j @  X ( p )  d3p it is a decopposable 
operator {G( p ) } ,  where A( p )  is the operator on &( p ) .  We denote h = M ( 0 ) .  

Suppose that the set {&(e)-’} possesses measurability properties which are sufficient 
for the operator 

& - I =  0 &( p)- ‘  d3p (2.8) I 
to be a unitary operator from 10 &( p )  d3p to L2( p ) O  &(O), where L2( p )  is a space 
of complex functions of p, the squared modulus of which is integrated in R 3  over the 
measure p (a detailed description of the theory of direct operatorial integrals is given 
in Dixmier (1969)). Then the operator @’?; is a unitary operator from X to 

In the space L 2 ( p )  0 &(O)  we can directly calculate the representation generators. 
Since the calculations are carried out in a complete analogy with calculations of the 
one-particle representation generators, we produce the result at once: 

Jx P )  0 &(O).  

B = p ,  & = ( & 2 + p 2 ) 1 / 2 ,  A=-ipxa/ap+ j, 

(2.9) 

Here p denotes the operator of multiplication by p, k the three-momentum operator, 
the energy operator, 4 the rotation generators, and k the generators of the Lorentz 

boosts. The expression for the operators k is somewhat different from the well known 
one in the theory of one-particle representations. This is due to the fact that in the 
latter the measure d3p/(m2+p2)1’2 is usually chosen rather than d3p (cf the note on 
operators S ( p ) ) .  

We denote by T i ( p ;  h, j ) ,  i = 1 , 2 , .  . . , 10, the representation generators defined 
by formulae (2.9). Then, evidently, the representation generators g+  C ( g )  on the 
space X have the form 

= & - l & l + ( p ;  &, j)&-’&. (2.10) 

A transition to the space L2( p )  0 &(O) is physically associated with the separation 
of variables into external and internal ones. The external variable is defined by the 
three-momentum #, the internal variables being represented by the variables of the 
space &(O). However, in relativistic theory one may choose as the operators, which 
describe the motion of the system as a whole, some other sets of the three commuting 
self-adjoint operators. Accordingly, the decomposition of the space X will be of 
another form. We now describe such a decomposition for two more cases. 

In the first case, we take the operator of four-velocity e = PLM, where P is the 
four-momentum of the system, as an ‘external’ variable. Since G 2  = 1,  it is evident 
that actually only three operators are independent ones, for example, e = fi/A?f. A 
set of operators e defines a spectral measure A + & ( A )  on the upper flank of the 
hyperboloid A’= 1, where A is the four-vector {A,,, A}. It is clear that this spectral 
measure differs from that considered above. However, here and below we shall use 
the same notations as above to make the analogy between the considered cases more 
explicit. 

As a measure on the hyperboloid we take dp(A) = d3A/( 1 +A2)’/’. Then, in analogy 
with the decomposition accomplished above, we can define the unitary operator 73 
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which realises %'in the form J @ & ( A )  dp(A).  We denote %(O) = %'(A) at A = O .  Then, 
as above, we can construct the unitary operator & ( A )  from &YO) to %(A).  Since the 
measure dp(A) is relativistically invariant, it is sufficient now for constructing the 
operators & ( A )  to use the operators &{a(A)}  only, and one would not need operators 
of the type &p) .  However, we shall see that in the problem of composition of 
interactions the decomposition %' = j@ &( p )  d3p has an advantage (and rather substan- 
tial!) of its own. 

Reducing the operators G ( r ) ,  r E SU(2) and fi on &(O), we can, as well as in the 
above case, define the operators 1 and A. The calculation of the representation 
generators yields now the same expression (2.10) where 8 = J @ & ( A )  dp(A),  and the 
operators I " ( p ;  A, j )  are replaced with the operators Ti(A;  A, j )  the explicit form of 
which is as follows: 

p =  AA, 

R= -iAo a/aA + ( j x  A ) / (  1 + Ao).  

k = - i A  xa/aA + j ,  
(2.11) 

One more decomposition of the space %' can be realised, if one assumes that the 
'external' variable is defined by the set {$I, F2, B'} where the '+' and '-' components 
of four-vectors are derived by the formulae 

p+ = ( I / J ? ) ( ~ O + P ~ ) ,  p -  = (1/Jz)(p0--p3). (2.12) 

As a measure on the momentum space, we choose now d p (  p )  = dp+ dp' dp2/p+. This 
measure is relativistically invariant. We denote &(O) = &( p )  at p 1  = p 2  = 0,  p +  = a. 
To construct the unitary operators 8( p )  from &(O) to &( p) ,  one uses the representa- 
tion operators induced by the generators A+- and A+', 1 = 1,2 ,  where $PLY, p , ~  = 
0 ,1 , .  . . , 3  are the Lorentz group representation generators. As for A'* and M-', 
I = 1,2 ,  they are the generators of a group which is isomorphic to E(2). By reducing 
the representation operators of this group on %(O), one can define the operators j 
which satisfy the commutation relations for the spin operators. However, this procedure 
is not that simple in this case, for it uses a contraction. Explicit formulae readily follow 
from the work by Lev (1983), and we shall not dwell upon this problem. 

Introducing the operator & = = @ & ( p ) d p ( p ) ,  we shall come, as above, to the 
formula (2.10) where the form of operators T i ( p ;  A, j )  is as follows (see e.g. Lev 1983): 

fiL=pL, p+ = p + ,  B- = (A2+p3 /2p+ ,  

(2.13) 

where the index I means that a projection of the vector on the plane {1,2} is taken, 

As will be noted below, the three considered decompositions are used in the instant, 
point, and front forms of relativistic dynamics, respectively. The common feature of 
these decompositions is that from ten representation generators of the PoincarC group 
we construct the mass o erator A, some three-vector operator &? which specifies the 

I = 1,2 ,  E 1 2  = - E 2 1  = 1, E 1 1  = E 2 2  =o. 

decomposition X = B (k)*dp ( k )  over some measure p, a three-parameter family of 



Composition of interactions in relativistic quantum theory 2053 

operators used for the construction of operators Ofilk), and a three-parameter family of 
operators used for the construction of operators j .  

3. On the problem of equivalence of different forms of relativistic dynamics 

In the general case the interaction operators can be present in all ten representation 
generators g + t!?(g). However, when calculating some specific processes, it is desirable 
to deal with the cases when the interaction operators are present in the least possible 
number of generators. From this point of view, three forms of relativistic dynamics 
are considered as the most appropriate ones: the point, instant and front forms. In 
the instant form, the interaction operators can be present only in the operators of 
energy and purely Lorentz boosts, and in the point form only in the four-momentum 
operators. In the front form with a marked third axis, one proceeds first to the '+' 
and '-' components in accordance with (2.12). Then the interaction is introduced into 
the operators P- and M-',  1=1,2 ,  and the other generators remain free of the 
interaction. Thus, in the instant and point forms the interaction operators are included 
in four generators, and in the front one in three generators. Note, however, that in 
the front form the interaction terms are inevitably present in the operators of discrete 
symmetries. 

There arises the following basic question: are different forms physically equivalent, 
or does some form describe physical phenomena more adequately? This problem was 
put forth by Dirac (1949). One aspect of this problem is discussed below. 

Let us consider an arbitrary representation g + t!?(g) and assume that it specifies 
the decomposition E==@ @(k) d p ( k )  as described in § 2. We consider also a rep- 
resentation g +  V(g) which describes the same system but in the case when all 
interactions are eliminated. Suppose that, proceeding from this representation, the 
decomposition X = JO X( k) d p (  k) over the same measure as well as the corresponding 
operators %( k) and j can be defined. Suppose that we have found a unitary operator 
A from X ( 0 )  to @EO) such that AjA-' = j .  Then, as follows from (2.10), the operator 

OP = K'(  10 &(k)A%( k)-' dp(k ) )  T (3.1) 

realises the unitary equivalence between the representation generators g + C ( g )  and 
operators 

where & = A-'AA. From this formula and from (2.9), (2.11) and (2.13) it follows 
that for the case of three successive decompositions considered in § 2 we can in this 
way define the unitary equivalence of the arbitrary representation generators and 
generators of the representation which is specified in the instant, point and front forms, 
respectively. 

It is well known that the unitary equivalence of two representations does not yet 
guarantee their physical equivalence. In Sokolov and Shatny (1978) there is considered 
some explicit description of a system of three interacting particles in the point form, 
the unitary operators from the point form to the instant and front ones are constructed, 
and it is shown that these operators do not change the S-matrix. However, in the 
general case we are not sure as to which natural operator can be a candidate for the 
role of A, and the problem thus remains open. 

f l =  r - ' % T ' ( k ;  4, j)oU-'x (3.2) 
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4. A general formulation of Sokolov's method of packing operators 

We proceed now to the solution of the problem of composition of interactions described 
in 8 1. We shall produce a formulation of Sokolov's method of packing operators, 
which is applicable in each form of relativistic dynamics. As will be noted below, the 
unitary operators used for solving the problem have the same form as the operators 
(3.1). 

Thus, suppose that for any partition a into subsystems a l . .  . a,  we know the 
representations g + U ( g ;  a) .  Suppose that through this representation we can construct 
a decomposition into a direct integral 50 X(k; a )  d p ( k )  over the same measure p 
which is used for constructing the decomposition 50 X( k )  d p (  k )  corresponding to the 
representation g + U ( g ) .  Suppose also that for both decompositions there are satisfied 
all conditions described in § 2. 

The operators ~ ( a ) ,  % ( k ;  a ) , j ( u )  and m ( a )  as well as the spaces X(k; a )  at 
different partitions a will, geneially speaking, differ from each other. Let b be some 
other partition of the considered system into subsystems P1, D 2 , .  . . , Pq. Following 
Coester and Polyzou (1982), we shall adopt the following notation. If 0 denotes some 
operator, then by o b  we shall denote an operator derived from 0 when all interactions 
between the subsystems PI,  p 2 , .  . . , Pq have been eliminated. Such an operation, 
evidently, can be used not only for the operators but for the spaces X(k; a )  as well. 
Then, following the same work, we define the intersection a n b as a partition into 
non-interacting subsystems obtained in the case when all interactions between the 
subsystems c y 1 , .  . . , a,  as well as between the subsystems P l ,  . . . , Pq are eliminated. 
The generators T'(a) for the representation g += U ( g ;  a )  evidently satisfy the condition 

T l ( a ) b  = r ' ( a  n b ) ,  i = l , 2 , .  . . , l o .  (4.1) 
Since all operators and spaces specified here are completely defined by the generators 
T'(a) and by some fixed measure p, then the condition analogous to (4.1) is satisfied 
for the former. 

Suppose that we have found the unitary operators A ( a )  from X ( 0 )  to X ( 0 ;  a )  
which satisfy the conditions 

A ( a ) jA  (a)-' = j (  a ) ,  A ( U ) b  = A ( a  n b) .  

Then, as follows from (2.10), 
(4.2) 

where 

0 % ( k ;  a ) A ( a ) % ( k ) - '  d p ( k )  

P(u) = T - % r y k ;  f i ( ~ ) , j ) % - l ~ ,  

G ( U )  = A( U ) -  ~ ( u ) A ( u ) .  

From (4.2) and from the abovementioned, it follows that 

I j f ( ~ ) ~  = G(a  n b) .  = &(a n b ) ,  

(4.4) 

(4.7) 
It should be remembered that though we do not make concrete any of the dynamics 

forms, one must keep in mind that in this section we consider the problem of composition 
of interactions in some specific form. In any form, there exist the interaction-free 
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generators at those i at which T i ( k ;  h, j )  does not depend on h. Thus, if we apply 
a decomposition into a direct integral, which corresponds to  the given form (see the 
end of 0 2), then, as follows from (4.3) and ( 4 3 ,  at these i the operators &(a )  and 
f '(a) commute with each other. 

Suppose that we have constructed an operator & from the operators &(a )  and a 
unitary operator d from the operators &(a )  such that the following conditions are 
satisfied: 

&a = &(a ) ,  &a = &(a) .  (4.8) 

Then the formula 
f i  = dfid-1 

where 
f i  = . r r - l w i ( k ;  & , j ) % - I T  

(4.9) 

(4.10) 

gives a solution to the problem, since the conditions of cluster separability (see 0 1) 
are satisfied due to (4.3). From the above it follows also that the operator d will 
commute with f i  at such i at which the representation generators in a given form are 
free of the interaction. Therefore, the problem of composition of interactions is solved 
thus without leaving the frame of the given form. 

A solution of the mentioned combinatorial problem of construction of the operators 
6 and d was given by Sokolov (1977) (see also Coester and Polyzou 1982). As the 
operator 6, one can take, for example, the operator 

N 
6 =  (-l)k(k-1)!61(k)+UN 

k = 2  

where vN is a fully linked part of the operator 61, and 

6 j k ) =  & ( a )  
d i m a = k  

(4.11) 

(4.12) 

where the summing-up is accomplished over all partitions of the system into k sub- 
systems. The operator U, acts on X ( 0 ) .  It should commute with j and not depend on the 
way the objects 1 , 2 , .  . . , N are enumerated. 

One may accordingly construct the operator d; however, in this case as well as in 
the case of the operator 6 there is a considerable arbitrariness in the solution of the 
problem. The most substantial element in the solution of the problem is the finding 
of operators A ( a )  which satisfy the conditions (4.2). As seen from formula (4.6), the 
role of these operators is as follows: they 'pack' the operators m ( a )  to the operators 
h ( a ) ,  and the latter at all a act on the same space X ( 0 )  and commute with the same 
operator j .  That is wly Sokolov referred to his method as that of packing operators. 

5. Composition of interactions in three basic forms of dynamics 

In the point form all spaces X ( 0 ;  a )  are, generally speaking, different. Therefore, at 
a given A there will be different operators % ( A ;  a )  as well, though they are all induced 
by the same operator U { a ( A ) )  which does not depend on the interaction. Accordingly, 
all operators j (  a )  differ, general!y speaking, from j .  To solve the problem of composition 
of interactions, one has to find the unitary operators A ( a )  from X ( 0 )  to X ( 0 ;  a )  which 
satisfy the conditions (4.2). 
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In the front form all spaces X ( p ;  a )  at a given p are identical and coincide with 
X ( p ) .  All operators % ( p ;  a )  are also not dependent on a and coincide with % ( p ) .  
However, the operators j (  a ) ,  generally speaking, differ from each other, though they 
act in the same space X ( 0 ) .  To solve the problem, one has to find the unitary operators 
A ( a )  in X ( 0 )  which satisfy the conditions (4.2). 

In the instant form all spaces X(p; a )  are identical at a given p and coincide with 
%‘(p);  however, the operators % ( p ;  a )  depend on the interaction. Due to the fact 
that the measure j~ in this case is not relativistically invariant, for construction of such 
operators it is not sufficient to deal only with operators of the purely Lorentz boosts, 
but one has to introduce the operators B ( p ;  a )  = [l  + p 2 / M ( a ) 2 ] ” 4  as well. Since 
B ( p ;  a ) b  = B ( p ;  a n b ) ,  the operators % ( p ;  a )  possess the same property. Since the 
representation operators of the group SU(2) do not depend on the interaction and all 
spaces X ( 0 ;  a )  coincide with X(O) ,  all operators j ( a )  are identical and coincide with 
j .  Therefore, the problem of composition of interactions in this case can be solved 
completely, if all operators A ( a )  are assumed to be equal to unity. Note also that in 
the front and instant forms, evidently, the relations ~ ( a )  = T are satisfied. 

6. Discussion 

The variant A ( a )  = 1 in the instant form corresponds to the following procedure. We 
take the mass operators M ( a ) ,  reduce them on the space X ( 0 )  and obtain the operators 
m ( a ) .  The latter are introduced into formulae of the type (4.11) and (4.12) without 
any ‘packing’. In the point and front forms, we cannot assume A ( a )  = 1. It does not 
imply, of course, that these forms are ‘inferior’ compared with the instant one. 
However, the solution to the problem of composition of interactions in the point and 
front forms does not follow from the formulation proper of this problem, since some 
additional assumptions are needed in this case to find the operators which satisfy the 
conditions (4.2). 

The scheme considered is the most general one also for introduction of the 
interaction into a system (for example, the term vN in the formula (4.1 1)). In particular, 
this scheme can be used in local theories as well. It is well known that if the Lagrangians 
of local interactions are not dependent on the derivatives of field functions, and if the 
energy-momentum tensor is integrated over the hypersurfaces t = constant, we 
automatically arrive at the instant form. In this case the energy operator is given by 
the formula (see e.g. Bogoliubov and Shirkov 1976) 

where 2 ! : ? ( x )  are the Lagrangians of different interactions. Reducing this relation on 
the space X(O) ,  we note that in the local theory the mass operators are introduced 
into the law of composition of interactions also without ‘packing’, their composition 
into a complete mass operator being accomplished linearly by the formulae (4.1 1) and 
(4.12). Therefore, the solution of the problem in this case also corresponds to  the 
choice of A ( a )  = 1. However, the calculations of an explicit form of the ‘symmetrised 
product’, which defines the operator SP, are not, probably, easy from the technical 
point of view. 



Composition of interactions in relativistic quantum theory 2057 

Thus, we may conclude that in the instant form in the case of both local and 
non-local interactions the problem of composition of interactions is solved without 
'packing' of mass operators. As for the point and front forms, 'packing' should be 
necessarily non-trivial. 

One may assume that the results obtained have various applications, in particular 
in the field of the physics of intermediate energies and quark models. We shall not 
here discuss this problem in more detail, for it would require substantial efforts and 
space. Some results concerning the applications will be published by the author 
elsewhere. 

In conclusion, we shall show that the solution of the problem so obtained agrees 
in the instant form with the solution obtained by Coester and Polyzou (1982). Since 
in the instant form ~ ( a )  = T, one may omit this operator assuming that X is already 
realised in the form JO X (  p )  d3p. Coester and Polyzou (1982) work in the formalism 
of the multichannel scattering theory, so they introduce an additional space Xf= 
50 Xf( p )  d3p which is a direct sum of the channel spaces. Coester and Polyzou (1982) 
interconnect the spaces X ( p )  and Xf(p) as follows: X ( p )  = exp(-ip*)X(O), Xf(p) = 
exp(-ipXf)Xf(0), where 9 and Xf are the Newton-Wigner position operators on X 
and Xf, respectively. We shall consider these relations in the sense of the formula (2.5): 

@ ( p ) h  = I ( P )  exp(-ip&t, % ; ( P ) h ,  = I f ( P )  exP(-ipxf)tf, (6.2) 

if h = I ( O ) t ,  hf = I f (0) t r .  Furthermore, Coester and Polyzou (1982) consider two 
decomposable wave operators from 2, to X :  

h= Ofi (p )d3p ,  J a= O A ( p )  d3p, J (6.3) 

where 

@P) = ~ ' ( p ) ~ ( O w ; ( p ) - ' ,  fib) = Q ' ( P ) w u ~ ; ( p ) - ' ,  (6.4) 
the indices f of these operators being omitted. Instead of the operator d-' from 
(4.4), Coester and Polyzou (1982) solve the problem by means of the operator B = fillt 
(see formula (3.67) in their work). If one assumes the completeness of wave operators, 
it follows from (6.3) and (6.4) that 

B( U )  = 0 %'( p )  %'( p ;  a)-' d3p. J 
Thus, we have shown explicitly that the auxiliary space 2, and wave operators can be 
eliminated from the answer-the result noted by Coester and Polyzou (1982) in the 
introduction to their work. Since X ( a ) ,  = X ( a  n b ) ,  then from (6.5) it follows that 
the operators B ( a )  satisfy the same condition not only in the case of three bodies (as 
noted by Coester and Polyzou (1982)) but in the general case ab well. 

Let us demonstrate now that % ' ( p ;  a )  = % ( p ;  a) .  Since the Newton-Wigner posi- 
tion operator constucted over the generators (2.9) has a conventional form i a/ap, then 
it follows from (2.10) that 

X ( a )  = %(a)( i  a /ap)%(a) - ' .  (6.6) 
Since Q ( a ) - ' { t ( p ) }  = { v ( P ) ) ,  where T ( P )  = % ( p ;  a ) - ' t ( p )  and I ( P ' ) { ~ ( P ) } =  t ( p ' ) ,  
one can easily verify, by substituting (6.6) into (6.2), that the condition Q ' ( p ;  a )  = - 
% ( p ;  a )  is indeed satisfied. Thus, the operator (6.5) does coincide with the operators 
& ( U ) - '  (see formula (4.4)) at A ( a )  = 1. 
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Note added in proof. Recently the author learnt that the solution of the considered problem in the instant 
form of relativistic quantum mechanics had been obtained also by U Mutze (an article on the work will be 
published in Phys. Rev. D). This solution differs from that obtained by Coester and Polyzou (1982). 
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